4.3 Article

CMOS compatible on-chip decoupling capacitor based on vertically aligned carbon nanofibers

期刊

SOLID-STATE ELECTRONICS
卷 107, 期 -, 页码 15-19

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.sse.2015.01.022

关键词

Carbon nanofibers; CMOS; Low temperature; Decoupling capacitor

资金

  1. Vinnova, the Swedish Governmental Agency for Innovation Systems

向作者/读者索取更多资源

On-chip decoupling capacitor of specific capacitance 55 pF/mu m(2) (footprint area) which is 10 times higher than the commercially available discrete and on-chip (65 nm technology node) decoupling capacitors is presented. The electrodes of the capacitor are based on vertically aligned carbon nanofibers (CNFs) capable of being integrated directly on CMOS chips. The carbon nanofibers employed in this study were grown on CMOS chips using direct current plasma enhanced chemical vapor deposition (DC-PECVD) technique at CMOS compatible temperature. The carbon nanofibers were grown at temperature from 390 degrees C to 550 degrees C. The capacitance of the carbon nanofibers was measured by cyclic voltammetry and thus compared. Futhermore the capacitance of decoupling capacitor was measured using different voltage scan rate to show their high charge storage capability and finally the cyclic voltammetry is run for 1000 cycles to assess their suitability as electrode material for decoupling capacitor. Our results show the high specific capacitance and long-term reliability of performance of the on-chip decoupling capacitors. Moreover, the specific capacitance shown is larger for carbon nanofibers grown at higher temperature. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据