4.7 Article

Dynamic causal modelling of distributed electromagnetic responses

期刊

NEUROIMAGE
卷 47, 期 2, 页码 590-601

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2009.04.062

关键词

Dynamic causal modelling; EEG; MEG; Neural-mass; Neural-field; Variational Bayes; Inversion; System identification; Source reconstruction

资金

  1. Wellcome Trust [088130] Funding Source: Medline

向作者/读者索取更多资源

In this note, we describe a variant of dynamic causal modelling for evoked responses as measured with electroencephalography or magnetoencephalography (EEG and MEG). We depart from equivalent current dipole formulations of DCM, and extend it to provide spatiotemporal source estimates that are spatially distributed. The spatial model is based upon neural-field equations that model neuronal activity on the cortical manifold. We approximate this description of electrocortical activity with a set of local standing-waves that are coupled though their temporal dynamics. The ensuing distributed DCM models source as a mixture of overlapping patches on the cortical mesh. Time-varying activity in this mixture, caused by activity in other sources and exogenous inputs, is propagated through appropriate lead-field or gain-matrices to generate observed sensor data. This spatial model has three key advantages. First, it is more appropriate than equivalent current dipole models, when real source activity is distributed locally within a cortical area. Second, the spatial degrees of freedom of the model can be specified and therefore optimised using model selection. Finally, the model is linear in the spatial parameters, which finesses model inversion. Here, we describe the distributed spatial model and present a comparative evaluation with conventional equivalent current dipole (ECD) models of auditory processing, as measured with EEG. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据