4.5 Article

Ultrasonic-assisted one-pot preparation of ZnO/Ag3VO4 nanocomposites for efficiently degradation of organic pollutants under visible-light irradiation

期刊

SOLID STATE SCIENCES
卷 49, 期 -, 页码 68-77

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solidstatesciences.2015.10.002

关键词

Ultrasonic-assisted; ZnO/Ag3VO4; n-n heterojunction; Dye pollutants

资金

  1. University of Mohaghegh Ardabili

向作者/读者索取更多资源

We report a facile ultrasonic-assisted one-pot method for preparation of ZnO/Ag3VO4 nanocomposites with different mole fractions of silver vanadate. The preparation method has considerable merits such as short preparation time, large-scale, and one-pot strategy. The resultant samples were fairly characterized by means of XRD, EDX, SEM, TEM, UV-vis DRS, FT-IR, and PL techniques. Visible-light activity of the resultant samples was investigated by degradation of rhodamine B (RhB), methylene blue (MB), and methyl orange (MO). Among the prepared nanocomposites, the ZnO/Ag3VO4 nanocomposite with 0.073 mole fraction of Ag3VO4 exhibited the best activity and excessive amount of Ag3VO4 resulted in decrease of the activity. Photocatalytic activity of this nanocomposite under visible-light irradiation is about 21, 56, and 2.8-fold higher than that of the ZnO sample in degradation of RhB, MB, and MO, respectively. The highly enhanced activity of the nanocomposite was attributed to greater generation of electron-hole pairs, due to photosensitizing role of Ag3VO4 under visible-light irradiation, and efficiently separation of the photogenerated electronehole pairs, due to formation of n-n heterojunction between the counterparts. Furthermore, it was revealed that the photocatalytic activity largely depends on ultrasonic irradiation time, calcination temperature, and scavengers of the reactive species. (C) 2015 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据