4.7 Article

Neural correlates of age-related changes in cortical neurophysiology

期刊

NEUROIMAGE
卷 40, 期 4, 页码 1772-1781

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2008.01.039

关键词

motor cortex; premotor cortex; fMRI; TMS; ageing; hand grip; interhemispheric inhibition

资金

  1. MRC [G0401353] Funding Source: UKRI
  2. Medical Research Council [G0401353] Funding Source: Medline
  3. Wellcome Trust [071398] Funding Source: Medline
  4. Medical Research Council [G0401353] Funding Source: researchfish

向作者/读者索取更多资源

Functional imaging studies of cortical motor systems in humans have demonstrated age-related reorganisation often attributed to anatomical and physiological changes. In this study we investigated whether aspects of brain activity during a motor task were influenced not only by age, but also by neurophysiological parameters of the motor cortex contralateral to the moving hand. Twenty seven right-handed volunteers underwent functional magnetic resonance imaging whilst performing repetitive isometric right hand grips in which the target force was parametrically varied between 15 and 55% of each subject's own maximum grip force. For each subject we characterised two orthogonal parameters, BG (average task-related activity for all hand grips) and BF (the degree to which task-related activity co-varied with peak grip force). We used transcranial magnetic stimulation (TMS) to assess task-related changes in interhemispheric inhibition from left to right motor cortex (IHIc) and to perform measures relating to left motor cortex excitability during activation of the right hand. Firstly, we found that BG in right (ipsilateral) motor cortex was greater with increasing values of age(2) and IHIc. Secondly, BF in left ventral premotor cortex was greater in older subjects and in those in whom contralateral M1 was less responsive to TMS stimulation. In both cases, neurophysiological parameters accounted for variability in brain responses over and above that explained by ageing. These results indicate that neurophysiological markers may be better indicators of biological ageing than chronological age and point towards the mechanisms by which reconfiguration of distributed brain networks occurs in the face of degenerative changes. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据