4.4 Article

Increased prokineticin 2 expression in gut inflammation: role in visceral pain and intestinal ion transport

期刊

NEUROGASTROENTEROLOGY AND MOTILITY
卷 24, 期 1, 页码 65-+

出版社

WILEY
DOI: 10.1111/j.1365-2982.2011.01804.x

关键词

colitis; ion transport; PKR1; PROK2; prokineticin; visceral pain

向作者/读者索取更多资源

Background Prokineticin 2 (PROK2) is an inflammatory cytokine-like molecule expressed predominantly by macrophages and neutrophils infiltrating sites of tissue damage. Given the established role of prokineticin signaling on gastrointestinal function, we have explored Prok2 gene expression in inflammatory conditions of the gastrointestinal tract and assessed the possible consequences on gut physiology. Methods Prokineticin expression was examined in normal and colitic tissues using qPCR and immunohistochemistry. Functional responses to PROK2 were studied using calcium imaging and a novel antagonist, Compound 3, used to determine the role of PROK2 and prokineticin receptors in inflammatory visceral pain and ion transport. Key Results Prok2 gene expression was up-regulated in biopsy samples from ulcerative colitis patients, and similar elevations were observed in rodent models of inflammatory colitis. Prokineticin receptor 1 (PKR1) was localized to the enteric neurons and extrinsic sensory neurons, whereas Pkr2 expression was restricted to sensory ganglia. In rats, PROK2-increased intracellular calcium levels in cultured enteric and dorsal root ganglia neurons, which was blocked by Compound 3. Moreover, PROK2 acting at prokineticin receptors stimulated intrinsic neuronally mediated ion transport in rat ileal mucosa. In vivo, Compound 3 reversed intracolonic mustard oil-induced referred allodynia and TNBS-induced visceral hypersensitivity, but not non-inflammatory, stress-induced visceral pain. Conclusions & Inferences Elevated Prok2 levels, as a consequence of gastrointestinal tract inflammation, induce visceral pain via prokineticin receptors. This observation, together with the finding that PROK2 can modulate intestinal ion transport, raises the possibility that inhibitors of PROK2 signaling may have clinical utility in gastrointestinal disorders, such as irritable bowel syndrome and inflammatory bowel disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据