4.4 Article

Reduced anxiety-like behavior and central neurochemical change in germ-free mice

期刊

NEUROGASTROENTEROLOGY AND MOTILITY
卷 23, 期 3, 页码 -

出版社

WILEY
DOI: 10.1111/j.1365-2982.2010.01620.x

关键词

anxiety-like behavior; elevated plus maze; gnotobiotic; gut-brain axis; hippocampus

资金

  1. National Science and Engineering Research Council of Canada (NSERC)
  2. Canadian Foundation for Innovation
  3. Ontario Graduate Scholarship
  4. Ontario Graduate Scholarship in Science and Technology

向作者/读者索取更多资源

Background There is increasing interest in the gut-brain axis and the role intestinal microbiota may play in communication between these two systems. Acquisition of intestinal microbiota in the immediate postnatal period has a defining impact on the development and function of the gastrointestinal, immune, neuroendocrine and metabolic systems. For example, the presence of gut microbiota regulates the set point for hypothalamic-pituitary-adrenal (HPA) axis activity. Methods We investigated basal behavior of adult germ-free (GF), Swiss Webster female mice in the elevated plus maze (EPM) and compared this to conventionally reared specific pathogen free (SPF) mice. Additionally, we measured brain mRNA expression of genes implicated in anxiety and stress-reactivity. Key Results Germ-free mice, compared to SPF mice, exhibited basal behavior in the EPM that can be interpreted as anxiolytic. Altered GF behavior was accompanied by a decrease in the N-methyl-D-aspartate receptor subunit NR2B mRNA expression in the central amygdala, increased brain-derived neurotrophic factor expression and decreased serotonin receptor 1A (5HT1A) expression in the dentate granule layer of the hippocampus. Conclusions & Inferences We conclude that the presence or absence of conventional intestinal microbiota influences the development of behavior, and is accompanied by neurochemical changes in the brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据