4.4 Article

Investigation of the role of adrenergic and non-nitrergic, non-adrenergic neurotransmission in the sheep isolated internal anal sphincter

期刊

NEUROGASTROENTEROLOGY AND MOTILITY
卷 21, 期 3, 页码 335-345

出版社

WILEY
DOI: 10.1111/j.1365-2982.2008.01250.x

关键词

anal sphincter; electrical field stimulation; neurotransmission; noradrenaline

资金

  1. Sir Jules Thorn Trust
  2. University of Nottingham Medical Research Fund

向作者/读者索取更多资源

Nitric oxide is widely established as an important neurotransmitter in the control of anal sphincter tone; although, a number of other transmitters have also been tentatively implicated. Whilst alpha-adrenoceptor antagonists reduce anal sphincter pressure in man, the role of noradrenaline as a possible transmitter is poorly characterised. We have investigated the contribution of these transmitters to neurogenic relaxations, and evaluated the possible role of a non-nitrergic, non-adrenergic transmitter. The magnitude and duration of neurogenic responses were examined by measuring responses to electrical field stimulation (EFS) in segments of sheep internal anal sphincter following the development of spontaneous myogenic tone. Neurogenic relaxations induced by EFS were significantly reduced in the presence of N-G-nitro-L-arginine methyl ester (L-NAME) suggesting major involvement of nitric oxide as a neurotransmitter. The duration of neurogenic relaxations was inversely related to the frequency of EFS, with contractile responses often manifest at higher frequencies. The duration of relaxations at high frequencies of EFS was increased by bretylium (adrenergic neurone blocker) and prazosin (alpha(1)-adrenoceptor antagonist). At higher frequencies of EFS, 60% of preparations also produced a residual non-nitrergic, non-adrenergic, apamin-sensitive relaxation which was unaffected by vasoactive intestinal polypeptide (VIP) and inhibitors of purinergic responses [suramin, pyridoxal-phosphate-6-azophenyl 2', 4' disulfonic acid (PPADS) and alpha, beta-methylene adenosine triphosphate (ATP)]. However, MRS2179 (P2Y(1) receptor antagonist) showed a modest inhibitory effect. We conclude that endogenous noradrenaline acts via postjunctional alpha(1)-adrenoceptors to antagonize neurogenic relaxations that are largely mediated by nitric oxide. Our results indicate the involvement of a non-nitrergic, non-adrenergic, apamin-sensitive transmitter which is inhibited by MRS2179, suggesting a possible role for purines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据