4.6 Article

Robust stability of discrete-time stochastic neural networks with time-varying delays

期刊

NEUROCOMPUTING
卷 71, 期 4-6, 页码 823-833

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.neucom.2007.03.008

关键词

discrete neural networks; uncertain neural networks; stochastic neural networks; exponential stability; time-varying delays; linear matrix inequality

向作者/读者索取更多资源

In this paper, the global exponential stability problem is studied for a class of discrete-time uncertain stochastic neural networks with time delays. The stability analysis problem is investigated, for the first time, for such kind of neural networks. In the neural network model, the parameter uncertainties are norm-bounded, the neural networks are subjected to stochastic disturbances described in terms of a Brownian motion, and the delay is time-varying. By utilizing a Lyapunov-Krasovskii functional and using some well-known inequalities, we convert the addressed stability analysis problem into the feasibility problem of several linear matrix inequalities (LMIs). Different from the commonly used matrix norm theories (such as the M-matrix method), a unified LMI approach is developed to establish sufficient conditions for the neural networks to be globally, robustly, exponentially stable. A numerical example is provided to show the usefulness of the proposed global stability condition. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据