4.5 Review

Mitochondrial dysfunction in brain aging: Role of oxidative stress and cardiolipin

期刊

NEUROCHEMISTRY INTERNATIONAL
卷 58, 期 4, 页码 447-457

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuint.2010.12.016

关键词

Mitochondria; Bioenergetics; Oxidative stress; Cardiolipin; Aging

向作者/读者索取更多资源

Aging is a biological process characterized by impairment of cellular bioenergetic function, increased oxidative stress, attenuated ability to respond to stresses, increased risk of contracting age-associated disorders that affects many tissues, with a more marked effect on brain and heart function. Oxidative stress is widely thought to underpin many aging processes. The mitochondrion is considered the most important cellular organelle to contribute to the aging process, mainly through respiratory chain dysfunction and formation of reactive oxygen species, leading to damage to mitochondrial proteins, lipids and mitochondrial DNA. Furthermore, exposure to oxidants, especially in the presence of Ca2+, can induce the mitochondrial permeability transition with deleterious effects on mitochondria, function. Cardiolipin plays a central role in several mitochondrial bioenergetic processes as well as in mitochondrial-dependent steps in apoptosis and mitochondrial membrane stability and dynamics. Alterations to cardiolipin structure, content and acyl chain profile have been associated with mitochondrial dysfunction in multiple tissues in several physiopathological conditions and aging. In this review, we focus on the role played by oxidative stress and cardiolipin in mitochondrial bioenergetic alterations associated with brain aging. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据