4.5 Article

Rg1 reduces nigral iron levels of MPTP-treated C57BL6 mice by regulating certain iron transport proteins

期刊

NEUROCHEMISTRY INTERNATIONAL
卷 54, 期 1, 页码 43-48

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuint.2008.10.003

关键词

Parkinson's disease; Ginsenoside Rg1; 1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP); Dopamine; Iron; Divalent metal transporter (DMT1); Ferroportin1 (FP1)

资金

  1. National Program of Basic Research
  2. Ministry of Science and Technology of China [2006CB500704, 2007CB516701]
  3. National Foundation of Natural Science of China [30570649, 30600190]

向作者/读者索取更多资源

Elevated iron levels in the substantia nigra (SN) participate in neuronal death in Parkinson's disease, in which the misregulation of iron transporters such as divalent metal transporter (DMT1) and ferroportin1 (FP1) are involved. Our previous work observed that nigral iron levels were increased in MPTP-treated mice and Ginsenoside Rg1 which is one of the main components of ginseng, had neuroprotective effects against MPTP toxicity. Whether Rg1 could reduce nigral iron levels to protect the dopaminergic neurons? And whether its neuroprotective effect is achieved by regulating certain iron transporters? The present studies showed that Rg1 pre-treatment increased the dopamine and its metabolites contents in the striatum, as well as increased tyrosine hydroxylase expression in the SN. Further experiments observed that Rg1 pre-treatment substantially attenuated MPTP-elevated iron levels, decreased DMT1 expression and increased FP1 expression in the SN. These results suggest that the neuroprotective effect of Rg1 on dopaminergic neurons against MPTP is due to the ability to reduce nigral iron levels, which is achieved by regulating the expressions of DMT1 and FP1. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据