4.5 Article

Melatonin attenuates methamphetamine-induced reduction of tyrosine hydroxylase, synaptophysin and growth-associated protein-43 levels in the neonatal rat brain

期刊

NEUROCHEMISTRY INTERNATIONAL
卷 55, 期 6, 页码 397-405

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuint.2009.04.010

关键词

Dopamine; Methamphetamine; Melatonin; Postnatal rat; Tyrosine hydroxylase; Synaptophysin; Growth-associated protein-43

资金

  1. Thailand Research Fund [TRF-RTA4989997]
  2. Commission on High Education Staff Development

向作者/读者索取更多资源

Methamphetamine (METH) is a most commonly abused drug which damages nerve terminals by causing formation of reactive oxygen species (ROS), apoptosis, and finally neuronal damage. Fetal exposure to neurotoxic METH causes significant behavioral effects. The developing fetus is substantially deficient in most antioxidative enzymes, and may therefore be at high risk from both endogenous and drug-enhanced oxidative stress. Little is known about the effects of METH on vesicular proteins such as synaptophysin and growth-associated protein 43 (GAP-43) in the immature brain. The present study attempted to investigate the effects of METH-induced neurotoxicity in the dopaminergic system of the neonatal rat brain. Neonatal rats were subcutaneously exposed to 5-10 mg/kg METH daily from postnatal day 4-10 for 7 consecutive days. The results showed that tyrosine hydroxylase enzyme levels were significantly decreased in the dorsal striatum, prefrontal cortex, nucleus accumbens and substantia nigra, synaptophysin levels decreased in the striatum and prefrontal cortex and growth-associated protein-43 (GAP43) levels significantly decreased in the nucleus accumbens of neonatal rats. Pretreatment with 2 mg/kg melatonin 30 min prior to METH administration prevented METH-induced reduction in tyrosine hydroxylase, synaptophysin and growth-associated protein-43 protein levels in different brain regions. These results suggest that melatonin provides a protective effect against METH-induced nerve terminal degeneration in the immature rat brain probably via its antioxidant properties. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据