4.5 Article

Blockade of GABA synthesis only affects neural excitability under activated conditions in rat hippocampal slices

期刊

NEUROCHEMISTRY INTERNATIONAL
卷 53, 期 1-2, 页码 22-32

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuint.2008.04.006

关键词

glutamate-glutamine cycling; GABA synthesis; GAD

资金

  1. NINDS NIH HHS [P01 NS039092-040004, R01 NS045792-03, R01 NS045792, P01 NS039092] Funding Source: Medline
  2. PHS HHS [054038, 045792] Funding Source: Medline

向作者/读者索取更多资源

The primary goal of this study was to establish whether inhibition of GABA synthesis was sufficient to induce network hyperexcitability in a rat hippocampal slice model comparable to that seen with GABA receptor blockade. We used field and intracellular recordings from the CA1 region of rat hippocampal slices to determine the physiological effects of blocking GABA synthesis with the convulsant, 3-mercaptoproprionic acid (MPA). We measured the rate of synthesis of GABA and glutamate in slices using 2-13C-glucose as a label source and liquid chromatography-tandem mass spectrometry. There was little effect of 3.5 mM MPA on evoked events under control recording conditions. Tissue excitability was enhanced following a series of stimulus trains; this effect was enhanced when GABA transport was blocked. Evoked inhibitory potentials (IPSPs) failed following repetitive stimulation and MPA. Spontaneous epileptiform activity was seen reliably with elevated extracellular potassium (5 mM). GABA synthesis decreased by 49% with MPA alone and 45% with the combination of MPA and excess potassium; GABA content was not substantially altered. Our data indicate: (1) GABAergic inhibition cannot be significantly compromised by MPA without network activation; (2) GABAergic synaptic inhibition is mediated by newly synthesized GABA; (3) there is a depletable pool of GABA that can sustain GABAergic inhibition when synthesis is impaired under basal, but not activated conditions; (4) overt hyperexcitability is only seen when newly synthesized GABA levels are low. (c) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据