4.5 Article

All-Trans-Retinoic Acid Rescues Neurons After Global Ischemia by Attenuating Neuroinflammatory Reactions

期刊

NEUROCHEMICAL RESEARCH
卷 38, 期 12, 页码 2604-2615

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11064-013-1178-x

关键词

All-trans-retinoic acid; Bilateral common carotid artery occlusion and reperfusion; BV2; Nitric oxide; Tissue necrosis factor-alpha; Interleukin-6

资金

  1. Korea Research Foundation in Korea [KRF-2011-0012388]
  2. Myunggok Research Institute, College of Medicine, Konyang University [2010-17]

向作者/读者索取更多资源

Retinoic acid (RA) plays an important role in the developing mammalian nervous system. Based on this concept, some studies have demonstrated the beneficial effects of RA administration on neurogenesis in neuropathological diseases. Some investigations have revealed the anti-inflammatory effects of RA treatment in multiple systems, in addition to its role in neurogenesis. To date, however, the neuroprotective efficacy of RA after cerebral ischemia, especially in the context of its anti-inflammatory effects, has been poorly demonstrated. Additionally, to the best of our knowledge, experiments of the therapeutic efficacy of RA treatment in a transient global ischemic model in the Mongolian gerbil have been lacking worldwide. Here, we studied the neuroprotective effects and neurobehavioral outcomes of intraperitoneally administered all-trans-RA (ATRA; a synthetic form of RA) on brains with transient global ischemia that was induced with the bilateral common carotid artery occlusion and reperfusion (BCCAO/R) model in the gerbil. In order to identify whether these neuroprotective mechanisms were due to the anti-inflammatory effects of ATRA, in vivo hippocampal expression of proinflammatory cytokines including tissue necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6) after ATRA injection and in vitro levels of release of nitric oxide, TNF-alpha and IL-6 from lipopolysaccharide (LPS)-stimulated BV2 microglial cells after ATRA treatment were evaluated. The results showed that ATRA can protect pyramidal neurons in the hippocampal CA1 region against BCCAO-induced neuronal apoptosis and significantly reduce the extent of astrocytosis and microglial activation. In addition, the ischemia-induced neurobehavioral changes were normalized by ATRA injection. Consistent with these phenotypic data, we observed the diminishing effects of ATRA treatment on the production of proinflammatory mediators (e.g., TNF-alpha and IL-6) in hippocampal homogenates and LPS-stimulated BV2 cells, and these effects were dose-dependent. These results suggest a beneficial role of ATRA in the attenuation of global cerebral ischemia due to its anti-inflammatory properties, resulting in, at least partly, the inhibition of microglial secretion of variable proinflammatory cytokines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据