4.5 Article

Differentiation and Neuro-Protective Properties of Immortalized Human Tooth Germ Stem Cells

期刊

NEUROCHEMICAL RESEARCH
卷 36, 期 12, 页码 2227-2235

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11064-011-0546-7

关键词

Human tooth germ stem cell; Neuro-protection; Immortalization; Differentiation

资金

  1. Yeditepe University (Turkey)
  2. Russian Foundation for Basic Research
  3. Russian Federal Agency for Science and Innovations
  4. Asklepios-Med (Hungary)

向作者/读者索取更多资源

Stem cells are considered to be promising therapeutic options in many neuro-degenerative diseases and injuries to the central nervous system, including brain ischemia and spinal cord trauma. Apart from the gold standard embryonic and mesenchymal origin, human tooth germ stem cells (hTGSCs) have also been shown to enjoy the characteristics of mesenchymal stem cells (MSCs) and the ability to differentiate into adipo-, chondro-, osteo- and neuro-genic cells, suggesting that they might serve as potential alternatives in the cellular therapy of various maladies. Immortalization of stem cells may be useful to avoid senescence of stem cells and to increase their proliferation potential without altering their natural characteristics. This study evaluated the expression of stem cell markers, surface antigens, differentiation capacity, and karyotype of hTGSCs that have been immortalized by human telomerase reverse transcriptase (hTERT) or simian vacuolating virus 40 (SV40) large T antigen. These undying cells were also evaluated for their neuro-protective potential using an in vitro SH-SY5Y neuro-blastoma model treated with hydrogen-peroxide or doxo-rubicin. Although hTGSC-SV40 showed abnormal karyotypes, our results suggest that hTGSC-hTERT preserve their MSC characteristics, differentiation capacity and normal karyotype, and they also possess high proliferation rate and neuro-protective effects even at great passage numbers. These peculiars indicate that hTGSC-hTERT could be used as a viable model for studying adipo-, osteo-, odonto- and neuro-genesis, as well as neuro-protection of MSCs, which may serve as a springboard for potentially utilizing dental waste material in cellular therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据