4.7 Article

Black oxide nanoparticles as durable solar absorbing material for high-temperature concentrating solar power system

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 134, 期 -, 页码 417-424

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solmat.2014.12.004

关键词

Concentrating solar power; Solar absorber; Cobalt oxide; Light trapping; High temperature

资金

  1. US Department of Energy, SunShot Program [DE-EE0005802]

向作者/读者索取更多资源

Concentrating solar power is becoming an increasingly important part of the renewable energy portfolio. However, further cost reduction is desired to make CSP competitive with traditional energy technologies. Higher operating temperature is considered an attractive avenue leading to higher power conversion efficiency and lower cost, but tremendous technical challenges exist with higher temperature operation of CSP, with one of the main issues being the lack of a high-performance solar absorbing material that is durable at 750 degrees C or above. In this work, a black oxide material, made of cobalt oxide nanoparticles, is synthesized and utilized as a high-temperature solar absorbing material. The nanoparticles are embedded in a dielectric matrix through a scalable spray coating process. The top layer of the coating is further improved with light-trapping structures using sacrificial fillers introduced from the same coating process. After the surface modification of cobalt oxide coating, we achieved a high thermal efficiency of 88.2%. More importantly, the coating shows no degradation after 1000-h annealing at 750 degrees C in air, while the existing commercial light absorbing coating was reported to degrade by long-term exposure at high temperature. Our findings suggest that the materials and processes developed here are promising for solar absorbing coating for future high-temperature CSP systems. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据