4.7 Article

Seizure-related activity of intralaminar thalamic neurons in a genetic model of absence epilepsy

期刊

NEUROBIOLOGY OF DISEASE
卷 43, 期 1, 页码 266-274

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2011.03.019

关键词

Seizure; Thalamo-cortical networks; Neuronal oscillation; Genetic model

资金

  1. Deutsche Forschungsgemeinschaft [Pa 336/17-1]
  2. Max Planck-Research Award

向作者/读者索取更多资源

Absence seizures are characterized by bilateral spike-and-wave discharges (SWDs) in thalamo-cortical circuits. In view of clinical studies indicating a critical involvement of intralaminar thalamic nuclei, we thought it timely to characterize the specific role and activity patterns of the respective neurons. Electrocorticographic (ECoG), intracellular, and unit activity recordings were performed in vivo from intralaminar thalamic neurons of the centrolateral (CL) and the paracentral (PC) thalamic nucleus in an established genetic rat model of absence epilepsy (WAG/Rij). Neurons in PC are depolarized to produce tonic series of action potentials at seizure-free episodes, and are rhythmically silenced concomitant with SWDs in a spike-locked manner. Rebound from spike-locked inhibition is associated with a transient increase in action potential activity. Neurons in CL possess a relatively negative membrane potential with overall low electrogenic activity at seizure-free episodes and generate burst-like discharges during SWDs that are locked to the decaying phase of the spike component on the ECoG. The SWD-locked membrane responses reverse close to the presumed chloride equilibrium potential, indicating GABA(A) receptor-mediated inhibitory postsynaptic potentials (IPSPs), with cell-type specific differences in polarity. In PC neurons, hyperpolarizing IPSPs result in spike-locked silencing of tonic firing and rebound burst discharges, while in CL neurons, IPSPs are depolarizing and trigger low-threshold burst firing likely mediated by at-type Ca2+ conductance. These data show a unique pattern of rhythmic SWD-locked IPSPs in PC and CL associated with paroxysms apt to impose a transient dysfunctional state to thalamo-striato-prefrontocortical networks during absence seizures. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据