4.7 Article

Antiepileptic drug resistant rats differ from drug responsive rats in GABAA receptor subunit expression in a model of temporal lobe epilepsy

期刊

NEUROBIOLOGY OF DISEASE
卷 31, 期 2, 页码 169-187

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2008.01.005

关键词

GABA; phenobarbital; pharmacoresistance; hippocampus; dentate gyrus

资金

  1. NINDS NIH HHS [R21 NS049592] Funding Source: Medline

向作者/读者索取更多资源

Epidemiological data indicate that 20-40% of the patients with epilepsy are refractory to treatment with antiepileptic drugs (AEDs). The mechanisms underlying pharmacoresistance in epilepsy are unclear, but several plausible hypotheses have emerged, including loss of AED target sensitivity in the epileptic brain, decreased AED concentrations at brain targets because of localized overexpression of drug efflux transporters in epileptogenic brain tissue, and network alterations in response to brain damage associated with epilepsy. Rat models of epilepsy in which part of the animals are resistant to treatment with AEDs offer a means to investigate the mechanisms underlying AED resistance. In the present study, AED-responsive and AED-resistant rats were selected from a model in which spontaneous recurrent seizures develop after a status epilepticus induced by electrical stimulation of the basolateral amygdala. For selection into responders and nonresponders, epileptic rats were treated over two weeks by phenobarbital. Subsequent histological examination showed neurodegeneration of the CA1, CA3 and dentate hilus in only one of eight responders but five of six nonresponders (P=0.0256). Based on previous studies in AED-resistant rats of this model, we hypothesized that changes in the structure and function of inhibitory GABA(A) receptors may contribute to drug resistance. We therefore analyzed the distribution and expression of several GABA(A) receptor subunits (alpha 1, alpha 2, alpha 3, alpha 4, alpha 6, beta 2/3, and gamma 2) immunohistochemically with specific antibodies in the hippocampal formation of responders, nonresponders and nonepileptic controls. In nonresponders, decreased subunit staining was observed in CA1, CA2, CA3, and dentate gyros, whereas much less widespread alterations were determined in responders. Furthermore, upregulation of the alpha 4-subunit was observed in the CA1 of nonresponders. Our data suggest that alterations in GABA(A) receptor subtypes may be involved in resistance to AEDs. (C) 2008 Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据