4.7 Article

Haloperidol protects striatal neurons from dysfunction induced by mutated huntingtin in vivo

期刊

NEUROBIOLOGY OF DISEASE
卷 29, 期 1, 页码 22-29

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2007.07.028

关键词

dopamine; D2 receptor; lentiviral infection; Huntington's disease; polyQ huntingtin; NeuN; DARPP-32; striatal dysfunction

向作者/读者索取更多资源

Huntington's disease (HD) results from an abnormal polyglutamine extension in the N-terminal region of the huntingtin protein. This mutation causes preferential degeneration of striatal projection neurons. We previously demonstrated, in vitro, that dopaminergic D2 receptor stimulation acted synergistically with mutated huntingtin (expHtt) to increase aggregate formation and striatal death. In the present work, we extend these observations to an in viva system based on lentiviral-mediated expression of expHtt in the rat striatum. The early and chronic treatment with the D2 antagonist haloperidol decanoate protects striatal neurons from expHtt-induced dysfunction, as analyzed by DARPP-32 and NeuN stainings. Haloperidol treatment also reduces aggregates formation, an effect that is maintained over time. These findings indicate that D2 receptors activation contributes to the deleterious effects of expHtt on striatal function and may represent an interesting early target to alter the subsequent course of neuropathology in HD. (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据