4.5 Article

In vivo MRI identifies cholinergic circuitry deficits in a Down syndrome model

期刊

NEUROBIOLOGY OF AGING
卷 30, 期 9, 页码 1453-1465

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.neurobiolaging.2007.11.026

关键词

Functional imaging; Acetylcholine; Medial septal nucleus; Alzheimer's disease; Ts65Dn trisomic mice; Basal forebrain; Ts1Cje trisomic mice

资金

  1. National Institute on Aging [AG17617, AG09466]

向作者/读者索取更多资源

In vivo quantitative magnetic resonance imaging (MRI) was employed to detect brain pathology and map its distribution within control, disomic mice (2N) and in Ts65Dn and Ts1Cje trisomy mice with features of human Down syndrome (DS). In Ts65Dn, but not Ts1Cje mice, transverse proton spin-spin (T2) relaxation time was selectively reduced in the medial septal nucleus (MSN) and in brain regions that receive cholinergic innervation from the MSN, including the hippocampus, cingulate cortex, and retrosplenial cortex. Basal forebrain cholinergic neurons (BFCNs) in the MSN, identified by choline acetyltransferase (ChAT) and nerve growth factor receptors p75(NTR) and TrkA immunolabeling were reduced in Ts65Dn brains and in situ acetylcholinesterase (AChE) activity was depleted distally along projecting cholinergic fibers, and selectively on pre- and postsynaptic profiles in these target areas. T-2 effects were negligible in Ts1Cje mice that are diploid for App and lack BFCN neuropathology, consistent with the suspected relationship of this pathology to increased App dosage. These results establish the utility of quantitative MRI in vivo for identifying Alzheimer's disease-relevant cholinergic changes in animal models of DS and characterizing the selective vulnerability of cholinergic neuron subpopulations. Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据