4.6 Article

AMPA receptors promote perivascular glioma invasion via β1 integrin-dependent adhesion to the extracellular matrix

期刊

NEURO-ONCOLOGY
卷 11, 期 3, 页码 260-273

出版社

OXFORD UNIV PRESS INC
DOI: 10.1215/15228517-2008-094

关键词

AMPA receptor; glioblastoma; glutamate; invasion; perivascular

资金

  1. University of Texas M. D. Anderson Cancer Center

向作者/读者索取更多资源

High-grade gliomas release excitotoxic concentrations of glutamate, which has been shown to enhance tumor proliferation and migration. alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) glutamate receptors are abundantly expressed at the invading edge of glioblastoma specimens, suggesting they may play an important biologic role in tumor invasion. In this study, we examined potential mechanisms by which AMPA receptor (AMPAR) expression and stimulation promote glioma cell migration and invasion. Overexpression of GluR1, the most abundant AMPAR subunit in gliomas, positively correlated with glioma cell adhesion to type I and type IV collagen, which was decreased in cells with knockdown of GluR1 and with blocking antibodies to beta 1 integrin. Furthermore, stimulation of the AMPAR led to detachment of cells from the extracellular matrix (ECM). Immunoprecipitation studies showed that GluR1 associated with the actin cytoskeleton-linked protein band 4.1B (brain type), which may serve as a link between GluR1 and integrins. Overexpression of GluR1 correlated with increased cell-surface expression of beta 1 integrin, increased phosphorylation of focal adhesion kinase (FAK-Y397), and enhanced numbers of focal adhesion (FA) complexes. Cells overexpressing GluR1 had increased colocalization of actin and paxillin at FAs and, in several glioma cell lines, significantly increased invasion in an in vitro Matrigel transwell assay. Likewise, in an intracranial xenograft model, overexpression of GluR1 led to perivascular and subependymal glioma cell invasion similar to patterns of tumor dissemination described in human glioblastoma. Together, these results suggest that AMPARs may link signals from the ECM to sites of FA, where signal integration promotes tumor invasion. Neuro-Oncology 11, 260-273, 2009 (Posted to Neuro-Oncology [serial online], Doc. D08-00144, October 28, 2008. URL http://neuro-oncology.dukejournals.org; DOI: 10.1215/15228517-2008-094)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据