4.5 Article

Metacognitive Learning in a Fully Complex-Valued Radial Basis Function Neural Network

期刊

NEURAL COMPUTATION
卷 24, 期 5, 页码 1297-1328

出版社

MIT PRESS
DOI: 10.1162/NECO_a_00254

关键词

-

资金

  1. Ministry of Education (MoE), Singapore [M58020020]

向作者/读者索取更多资源

Recent studies on human learning reveal that self-regulated learning in a metacognitive framework is the best strategy for efficient learning. As the machine learning algorithms are inspired by the principles of human learning, one needs to incorporate the concept of metacognition to develop efficient machine learning algorithms. In this letter we present a metacognitive learning framework that controls the learning process of a fully complex-valued radial basis function network and is referred to as a metacognitive fully complex-valued radial basis function (Mc-FCRBF) network. Mc-FCRBF has two components: a cognitive component containing the FC-RBF network and a metacognitive component, which regulates the learning process of FC-RBF. In every epoch, when a sample is presented to Mc-FCRBF, the metacognitive component decides what to learn, when to learn, and how to learn based on the knowledge acquired by the FC-RBF network and the new information contained in the sample. The Mc-FCRBF learning algorithm is described in detail, and both its approximation and classification abilities are evaluated using a set of benchmark and practical problems. Performance results indicate the superior approximation and classification performance of Mc-FCRBF compared to existing methods in the literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据