4.5 Article

Cross-Correlations in High-Conductance States of a Model Cortical Network

期刊

NEURAL COMPUTATION
卷 22, 期 2, 页码 427-447

出版社

M I T PRESS
DOI: 10.1162/neco.2009.06-08-806

关键词

-

向作者/读者索取更多资源

Neuronal firing correlations are studied using simulations of a simple network model for a cortical column in a high-conductance state with dynamically balanced excitation and inhibition. Although correlations between individual pairs of neurons exhibit considerable heterogeneity, population averages show systematic behavior. When the network is in a stationary state, the average correlations are generically small correlation coefficients are of order 1/N, where N is the number of neurons in the network. However, when the input to the network varies strongly in time, much larger values are found. In this situation, the network is out of balance, and the synaptic conductance is low, at times when the strongest firing occurs. However, examination of the correlation functions of synaptic currents reveals that after these bursts, balance is restored within a few milliseconds by a rapid increase in inhibitory synaptic conductance. These findings suggest an extension of the notion of the balanced state to include balanced fluctuations of synaptic currents, with a characteristic timescale of a few milliseconds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据