4.1 Article

OPTIMIZATION OF BODIES WITH LOCALLY PERIODIC MICROSTRUCTURE BY VARYING THE PERIODICITY PATTERN

期刊

NETWORKS AND HETEROGENEOUS MEDIA
卷 9, 期 3, 页码 433-451

出版社

AMER INST MATHEMATICAL SCIENCES-AIMS
DOI: 10.3934/nhm.2014.9.433

关键词

Shape optimization; topology optimization; periodicity optimization; alternate directions algorithm; locally periodic homogenization; cellular problem; functionally graded materials; parallel computation

资金

  1. Fundacao para a Ciencia e a Tecnologia [PEst-OE/MAT/UIO209/2013]

向作者/读者索取更多资源

This paper describes a numerical method to optimize elastic bodies featuring a locally periodic microscopic pattern. A new idea, of optimizing the periodicity cell itself, is considered. In previously published works, the authors have found that optimizing the shape and topology of the model hole gives a limited flexibility to the microstructure for adapting to the macroscopic loads. In the present study the periodicity cell varies during the optimization process, thus allowing the microstructure to adapt freely to the given loads. Our approach makes the link between the microscopic level and the macroscopic one. Two-dimensional linearly elastic bodies are considered, however the same techniques can be applied to three-dimensional bodies. Homogenization theory is used to describe the macroscopic (effective) elastic properties of the body. Numerical examples are presented, in which a cantilever is optimized for different load cases, one of them being multi-load. The problem is numerically heavy, since the optimization of the macroscopic problem is performed by optimizing in simultaneous hundreds or even thousands of periodic structures, each one using its own finite element mesh on the periodicity cell. Parallel computation is used in order to alleviate the computational burden.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据