4.1 Article

COMPUTATIONAL MODELS FOR FLUID EXCHANGE BETWEEN MICROCIRCULATION AND TISSUE INTERSTITIUM

期刊

NETWORKS AND HETEROGENEOUS MEDIA
卷 9, 期 1, 页码 135-159

出版社

AMER INST MATHEMATICAL SCIENCES-AIMS
DOI: 10.3934/nhm.2014.9.135

关键词

Perfusion; intestitial flow; tumors enhanced permeability and retention; immersed boundary method

资金

  1. ERC [N.227058 MATHCARD]

向作者/读者索取更多资源

The aim of this work is to develop a computational model able to capture the interplay between microcirculation and interstitial flow. Such phenomena are at the basis of the exchange of nutrients, wastes and pharmacological agents between the cardiovascular system and the organs. They are particularly interesting for the study of effective therapies to treat vascularized tumors with drugs. We develop a model applicable at the microscopic scale, where the capillaries and the interstitial volume can be described as independent structures capable to propagate flow. We facilitate the analysis of complex capillary bed configurations, by representing the capillaries as a one-dimensional network, ending up with a heterogeneous system characterized by channels embedded into a porous medium. We use the immersed boundary method to couple the one-dimensional with the three-dimensional flow through the network and the interstitial volume, respectively. The main idea consists in replacing the immersed network with an equivalent concentrated source term. After discussing the details for the implementation of a computational solver, we apply it to compare flow within healthy and tumor tissue samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据