4.7 Article

Nitrapyrin decreased nitrification of nitrogen released from soil organic matter but not amoA gene abundance at high soil temperature

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 88, 期 -, 页码 214-223

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2015.05.029

关键词

Nitrification inhibitor; Ammonia oxidation; AOB; AOA; N-15 isotopic pool dilution; Semi-arid

资金

  1. Australian Grains Research and Development Corporation's Soil Biology Initiative II [UWA00139]
  2. Australian Research Council [FT110100246]
  3. Australian Postgraduate Award
  4. University of Western Australia Safety-Net Top-Up Award
  5. Completion Scholarship
  6. Australian Research Council Future Fellowship [FT110100246]
  7. Australian Government
  8. Australian Grains Research and Development Corporation
  9. Australian Research Council [FT110100246] Funding Source: Australian Research Council

向作者/读者索取更多资源

Water pulses have a significant impact on nitrogen (N) cycling, making management of N challenging in agricultural soils that are exposed to episodic rainfall. In hot, dry environments, wetting of dry soil during summer fallow causes a rapid flush of organic matter mineralisation and subsequent nitrification, which may lead to N loss via nitrous oxide emission and nitrate leaching. Here we examined the potential for the nitrification inhibitor nitrapyrin to decrease gross nitrification at elevated temperature in soils with contrasting soil organic matter contents, and the consequent effects on ammonia oxidiser populations. Soil was collected during summer fallow while dry (water content 0.01 g g(-1) soil) from a research site with two management treatments (tilled soil and tilled soil with long-term additional crop residues) by three field replicates. The field dry soil (0-10 cm) was wet with or without nitrapyrin, and incubated (20 or 40 degrees C) at either constant soil water content or allowed to dry (to simulate summer drying after a rainfall event). Gross N transformation rates and inorganic N pools sizes were determined on six occasions during the 14 day incubation. Bacterial and archaeal amoA gene abundance was determined on days 0, 1, 7 and 14. Nitrapyrin increased ammonium retention and decreased gross nitrification rates even with soil drying at 40 degrees C. Nitrification was likely driven by bacterial ammonia oxidisers, as the archaeal amoA gene was below detection in the surface soil layer. Bacterial ammonia oxidiser gene abundances were not affected by nitrapyrin, despite the decrease in nitrifier activity. Increased soil organic matter from long-term additional crop residues diminished the effectiveness of nitrapyrin. The present study highlights the potential for nitrapyrin to decrease nitrification and the risk of N loss due to mineralisation of soil organic matter under summer fallow conditions. Crown Copyright (C) 2015 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据