4.7 Article

Influence of shrub encroachment on CT-measured soil macropore characteristics in the Inner Mongolia grassland of northern China

期刊

SOIL & TILLAGE RESEARCH
卷 150, 期 -, 页码 1-9

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.still.2014.12.019

关键词

Caragana microphylla Lam; Interspace grass; Shrub canopy; Soil architecture; Macropore; Root

资金

  1. National Science Foundation of China [NSFC 41101019, 41130640]

向作者/读者索取更多资源

The Inner Mongolia grassland of northern China is extensively affected by shrub encroachment. However, the influence of shrub encroachment on soil architecture is not well understood. The objective of this study was to quantify the architecture of soils beneath the shrub canopy and in the adjacent interspace grass area following the establishment of a shrub Caragana microphylla Lam. Study treatments were three transition states of C. microphylla that represent 1.32%, 12.96%, and 40.12% shrub densities and the grass patch as the control. A total of eighteen soil cores (0-50 cm deep) were taken at the three sites with 3 replicates. At each site, three cores were from the shrub canopy and three from the grass patch, and cores were scanned with a GE HISPEED FX/I Medical Scanner. Numbers of macropores, macroporosity and macropore equivalent diameter within the 50 cm soil profile were interpreted from X-ray computed tomography to analyze soil architecture. The results indicated that shrub encroachment significantly influenced soil macropores. Soils under shrub canopy had greater macroporosity, and developed deeper and longer macropores than those in the interspace grass. X-ray CT showed that macroporosity was 1.4-3.4 times greater in soil under C. microphylla L than interspace grass. The intensity of shrub encroachment also had noticeable influences on soil macropore characteristics. Soil macroporosity decreased as shrub encroachment increased. In the grass patch, macropores were distributed mainly in the 0-200 mm soil layer, while in the shrub patch, they were found throughout the 0-400 mm soil layer. The large number of macropores found in soil under the shrub canopy can be attributed to greater root development and subsequent root decay. We speculate that a continual increase of anthropogenic disturbance would further lower the macroporosity of grasses, leading to an increase of surface flow and the decrease of infiltration, and macropore architecture could cause transport of water to the deeper soil layers in the shrub patches than in the grass patches. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据