4.7 Article

Aggregate hierarchy and carbon mineralization in two Oxisols of New South Wales, Australia

期刊

SOIL & TILLAGE RESEARCH
卷 146, 期 -, 页码 193-203

出版社

ELSEVIER
DOI: 10.1016/j.still.2014.10.008

关键词

Macro-aggregates; Micro-aggregates; Organic carbon; Carbon mineralization; Pore geometry

向作者/读者索取更多资源

The conventional model of aggregate formation suggests a hierarchy where micro-aggregates with lower porosity and therefore reduced soil organic carbon (SOC) mineralization form inside macro-aggregates. This model has however been questioned for highly weathered Oxisols where inconclusive results regarding the presence of aggregate hierarchy have been obtained to date. We hypothesized that in Oxisols (i) an aggregate hierarchy would be present (ii) the porosity of micro-aggregates would be lower than that of macro-aggregates and (iii) pore geometry of aggregates would influence SOC mineralization. We collected topsoils from Oxisols in northern New South Wales, Australia from which macro-aggregates (>250 mu m), micro-aggregates (53-250 mu m) and <53 mu m fractions were isolated from bulk soil by wet sieving. 3D images of macro- and micro-aggregates were produced using X-ray computed tomography (mu CT) showing the presence of micro-aggregates inside macro-aggregates, which confirmed the presence of an aggregate hierarchy in the Oxisols studied. Macro-aggregates were more common and SOC in higher concentrations in forest systems compared with agricultural (the cultivation or pasture) land-uses, but aggregate geometry differed little between the land-uses studied. The porosity of macroaggregates (4%) was significantly lower than micro-aggregates (5.5%). Despite the differences in pore geometry between macro- and micro-aggregates, SOC mineralized (SOCmin) during a 2-month incubation (at 25 degrees C) was similar in macro- (3% of SOC concentration) and micro-aggregates (2.8% of SOC concentration). We conclude that although aggregate hierarchy exists in these soils and that aggregate geometry did differ between aggregate size classes, there was no evidence to support the porosity exclusion principle and the assumption that SOC is preferentially stabilized within microaggregates in these soils. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据