4.6 Article

Evidence for involvement of nonesterified fatty acid-induced protonophoric uncoupling during mitochondrial dysfunction caused by hypoxia and reoxygenation

期刊

NEPHROLOGY DIALYSIS TRANSPLANTATION
卷 24, 期 1, 页码 43-51

出版社

OXFORD UNIV PRESS
DOI: 10.1093/ndt/gfn436

关键词

-

资金

  1. NIDDK NIH HHS [R56 DK034275, DK-34275, R01 DK034275] Funding Source: Medline
  2. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [R56DK034275, R01DK034275] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Background. Proximal tubules subjected to hypoxia in vitro under conditions relevant to ischaemia in vivo develop an energetic deficit that is not corrected even after full reoxygenation. We have provided evidence that accumulation of nonesterified fatty acids (NEFA) is the primary reason for this energetic deficit. In this study, we have further investigated the mechanism for the NEFA-induced energetic deficit. Methods. Mitochondrial membrane potential (Delta psi) was measured in digitonin-permeabilized, freshly isolated proximal tubules by safranin O uptake. Addition of the potassium/proton exchanger nigericin enables the determination of the mitochondrial proton motive force (Delta p) and the proton gradient (Delta pH). ATP was measured luminometrically and NEFA colorimetrically. Results. Tubule ATP content was depleted after hypoxia and recovered incompletely, even after full reoxygenation. Mitochondrial safranin O uptake was decreased in proximal tubules after hypoxia and reoxygenation (H/R). This decrease was attenuated by delipidated bovine serum albumin (dBSA) or citrate. Addition of nigericin increased safranin O uptake of mitochondria in normoxic proximal tubules, but not in proximal tubules after H/R. Addition of dBSA restored the effect of nigericin to increase mitochondrial safranin O uptake. Addition of the NEFA oleate had the same impact on mitochondrial safranin O uptake as subjecting proximal tubules to H/R. Conclusion. The mechanism of the NEFA-induced energetic deficit in freshly isolated rat proximal tubules induced by H/R is characterized by impaired ATP production after full reoxygenation, impaired recovery of Delta psi and Delta p, abrogation of Delta pH and sensitivity to citrate, consistent with involvement of the tricarboxylate carrier. The data support the concept that protonophoric uncoupling by NEFA movement on anion carriers plays a critical role in proximal tubule mitochochondrial dysfunction after H/R.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据