4.7 Article

Development of a magnetic sensor for detection and sizing of internal pipeline corrosion defects

期刊

NDT & E INTERNATIONAL
卷 42, 期 8, 页码 669-677

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ndteint.2009.06.009

关键词

Inspection; Pipelines; Magnetic sensor; Internal corrosion; Sensor for thick walls

向作者/读者索取更多资源

Magnetic flux leakage (MFL) is the most used technique for pipeline inspection, being applied through the use of instrumented PIGs. The pipe wall is magnetized and when metal loss or other irregularities occur, a larger fraction of the magnetic flux leaks outwards from the wall and is detected by sensors. MFL presents some limitations since it requires magnetic saturation of the pipe wall. Therefore, it is difficult to inspect small diameter and thick wall pipelines. Internal corrosion sensor (ICS) has been developed as a solution for internal corrosion measurements of thick walls. The technique, also called field disturbance, is based in a direct magnetic response from a small area of the wall. It is not necessary to achieve the magnetic saturation of the pipe material, and thus ICS performance is not affected by the thickness of the pipe wall. In the present work, finite element calculations are performed and the best resultant configuration of the sensor is proposed. Experimental tests with a prototype were carried out and the results give a strong indication of the validity of the theoretical model proposed for sizing. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据