4.8 Review

Engineering of Lanthanide-Doped Upconversion Nanoparticles for Optical Encoding

期刊

SMALL
卷 12, 期 7, 页码 836-852

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201502722

关键词

nanoparticles; optical encoding; core-shell structures; microbeads; lanthanides

资金

  1. Singapore National Medical Research Council [CBRG13nov052, R-397-000-199-511]

向作者/读者索取更多资源

Lanthanide-doped upconversion nanoparticles (UCNPs) are an emerging class of luminescent materials that emit UV or visible light under near infra-red (NIR) excitations, thereby possessing a large anti-Stokes shift property. Due to their sharp excitation and emission bands, excellent photo- and chemical stability, low autofluorescence, and high tissue penetration depth of the NIR light used for excitation, UCNPs have surpassed conventional fluorophores in many bioapplications. A better understanding of the mechanism of upconversion, as well as the development of better approaches to preparing UCNPs, have provided more opportunities to explore their use for optical encoding, which has the potential for applications in multiplex detection and imaging. With the current ability to precisely control the microstructure and properties of UCNPs to produce particles of tunable emission, excitation, luminescence lifetime, and size, various strategies for optical encoding based on UCNPs can now be developed. These optical properties of UCNPs (such as emission and excitation wavelengths, ratiometric intensity, luminescence lifetime, and multicolor patterns), and the strategies employed to engineer these properties for optical encoding of UCNPs through homogeneous ion doping, heterogeneous structure fabrication and microbead encapsulation are reviewed. The challenges and potential solutions faced by UCNP optical encoding are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据