4.7 Article

Antibiotic resistance-mediated isolation of scaffold-specific natural product producers

期刊

NATURE PROTOCOLS
卷 9, 期 6, 页码 1469-1479

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nprot.2014.093

关键词

-

资金

  1. Canadian Institutes of Health Research (CIHR) [MT-14981]
  2. Natural Sciences and Engineering Research Council [237480]
  3. Canada Research Chair in antibiotic biochemistry

向作者/读者索取更多资源

For over half a century, actinomycetes have served as the most promising source of novel antibacterial scaffolds. However, over the years, there has been a decline in the discovery of new antibiotics from actinomycetes. This is partly due to the use of standard screening methods and platforms that result in the re-discovery of the same molecules. Thus, according to current estimates, the discovery of a new antibacterial requires screening of tens to hundreds of thousands of bacterial strains. We have devised a resistance-based antibacterial discovery platform by harnessing the innate self-protection mechanism of antibiotic producers. This protocol provides a detailed method for isolation of scaffold-specific antibacterial producers by isolating strains in the presence of a selective antibiotic. As a specific example, we describe isolation of glycopeptide antibiotic (GPAPA) producers from soil actinomycetes, using vancomycin as the antibiotic resistance filter. However, the protocol can be adapted to isolate diverse producers from various sources producing different scaffolds, by selecting an appropriate antibiotic as a screening filter. The protocol provides a solution for two major bottlenecks that impede the new drug discovery pipeline: low hit frequency and re-discovery of known molecules. The entire protocol, from soil collection to identification of putative antibacterial producers, takes about 6 weeks to complete.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据