4.7 Article

Time-resolved RNA SHAPE chemistry: quantitative RNA structure analysis in one-second snapshots and at single-nucleotide resolution

期刊

NATURE PROTOCOLS
卷 4, 期 10, 页码 1413-1421

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nprot.2009.126

关键词

-

资金

  1. National Science Foundation [MCB-0416941]
  2. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM056222, R01GM064803] Funding Source: NIH RePORTER

向作者/读者索取更多资源

RNA selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry exploits the discovery that conformationally dynamic nucleotides preferentially adopt configurations that facilitate reaction between the 2'-OH group and a hydroxyl-selective electrophile, such as benzoyl cyanide (BzCN), to form a 2'-O-adduct. BzCN is ideally suited for quantitative, time-resolved analysis of RNA folding and ribonucleoprotein (RNP) assembly mechanisms because this reagent both reacts with flexible RNA nucleotides and also undergoes auto-inactivating hydrolysis with a half-life of 0.25 s at 37 degrees C. RNA folding is initiated by addition of Mg2+ or protein, or other change in solution conditions, and nucleotide resolution structural images are obtained by adding aliquots of the evolving reaction to BzCN and then 'waiting' for 1 second. Sites of the 2'-O-adduct formation are subsequently scored as stops to primer extension using reverse transcriptase. This time-resolved SHAPE protocol makes it possible to obtain 1-second structural snapshots in time-resolved kinetic studies for RNAs of arbitrary length and complexity in a straightforward and concise experiment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据