4.8 Article

Reconstructing the topology of optical polarization knots

期刊

NATURE PHYSICS
卷 14, 期 11, 页码 1079-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41567-018-0229-2

关键词

-

资金

  1. Canada Research Chair (CRC)
  2. Canada Foundation for Innovation (CFI)
  3. NSERC
  4. Canada Excellence Research Chairs (CERC) Program
  5. Leverhulme Trust [RP2013-K-009]

向作者/读者索取更多资源

Knots are topological structures describing how a looped thread can be arranged in space. Although most familiar as knotted material filaments, it is also possible to create knots in singular structures within three-dimensional physical fields such as fluid vortices(1) and the nulls of optical fields(2-4). Here we produce, in the transverse polarization profile of optical beams, knotted lines of circular transverse polarization. We generate and observe both simple torus knots and links as well as the topologically more complicated figure-eight knot. The presence of these knotted polarization singularities endows a nontrivial topological structure on the entire three-dimensional propagating wavefield. In particular, the contours of constant polarization azimuth form Seifert surfaces of high genus(5), which we are able to resolve experimentally in a process we call seifertometry. This analysis reveals a level of topological complexity, present in all experimentally generated polarization fields, that goes beyond the conventional reconstruction of polarization singularity lines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据