4.8 Article

Nodal quasiparticle meltdown in ultrahigh-resolution pump-probe angle-resolved photoemission

期刊

NATURE PHYSICS
卷 7, 期 10, 页码 805-809

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nphys2027

关键词

-

资金

  1. Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

High-transition-temperature cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low-energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction)-the most striking example of which is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Furthermore, whereas antinodal quasiparticle excitations occur only below the transition temperature (T-c), superconductivity is thought to be indifferent to nodal excitations that are regarded as robust and insensitive to T-c. Here we reveal an unexpected link between nodal quasiparticles and superconductivity using high-resolution time-and angle-resolved photoemission on optimally doped Bi2Sr2CaCu2O8+delta. We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation, and measure its recovery dynamics. This suppression is greatly enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据