4.8 Article

Evidence for a Lifshitz transition in electron-doped iron arsenic superconductors at the onset of superconductivity

期刊

NATURE PHYSICS
卷 6, 期 6, 页码 419-423

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHYS1656

关键词

-

资金

  1. Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]
  2. US DOE [DE-AC03-76SF00098]

向作者/读者索取更多资源

The iron arsenic high-temperature superconductors(1,2) exhibit particularly rich phase diagrams. In the AE(Fe1-xTx)(2)As-2 family (known as '122', with AE being Ca, Sr or Ba and T being a transition metal), the simultaneous structural/magnetic phase transition that occurs at elevated temperature in the undoped material splits and is suppressed by carrier doping(3,4). A superconducting region appears as likely in the orthorhombic/antiferromagnetic (AFM) state as in the tetragonal/paramagnetic state(3,5,6). An important question then is what determines the critical doping at which superconductivity emerges, as the AFM order is fully suppressed only close to optimal doping. Here we report evidence from angle-resolved photoemission spectroscopy that marked changes in the Fermi surface coincide with the onset of superconductivity in electron-doped Ba(Fe1-xCox)(2)As-2. The presence of the AFM order leads to a reconstruction of the electronic structure, most significantly the appearance of the petal-like hole pockets at the Fermi level. These hole pockets vanish-that is, undergo a Lifshitz transition(7)-as the cobalt concentration is increased sufficiently to support superconductivity. Superconductivity and magnetism are competing states in this system: when petal-like hole pockets are present, superconductivity is fully suppressed, whereas in their absence the two states can coexist.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据