4.8 Article

Observation of a large-gap topological-insulator class with a single Dirac cone on the surface

期刊

NATURE PHYSICS
卷 5, 期 6, 页码 398-402

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHYS1274

关键词

-

资金

  1. DOE-BES [DE-FG02-05ER46200]
  2. NSF-MRSEC [NSF-DMR-0819860]
  3. US Department of Energy, Office of Science, Basic Energy Sciences [DEFG02-07ER46352]
  4. NERSC
  5. Northeastern University's Advanced Scientific Computation Center (ASCC)
  6. NNSF-China [10874116]

向作者/读者索取更多资源

Recent experiments and theories have suggested that strong spin-orbit coupling effects in certain band insulators can give rise to a new phase of quantum matter, the so-called topological insulator, which can show macroscopic quantum-entanglement effects(1-7). Such systems feature two-dimensional surface states whose electrodynamic properties are described not by the conventional Maxwell equations but rather by an attached axion field, originally proposed to describe interacting quarks(8-15). It has been proposed that a topological insulator(2) with a single Dirac cone interfaced with a superconductor can form the most elementary unit for performing fault-tolerant quantum computation(14). Here we present an angle-resolved photoemission spectroscopy study that reveals the first observation of such a topological state of matter featuring a single surface Dirac cone realized in the naturally occurring Bi2Se3 class of materials. Our results, supported by our theoretical calculations, demonstrate that undoped Bi2Se3 can serve as the parent matrix compound for the long-sought topological device where in-plane carrier transport would have a purely quantum topological origin. Our study further suggests that the undoped compound reached via n-to-p doping should show topological transport phenomena even at room temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据