4.8 Article

Spin-resolved quantum interference in graphene

期刊

NATURE PHYSICS
卷 5, 期 12, 页码 894-897

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHYS1421

关键词

-

资金

  1. NSERC
  2. CIFAR
  3. CFI

向作者/读者索取更多资源

The unusual electronic properties of single-layer graphene(1) make it a promising materials system for fundamental advances in physics, and an attractive platform for new device technologies. Graphene's spin-transport properties are expected to be particularly interesting, with predictions for extremely long coherence times and intrinsic spin-polarized states at zero field(2-5). To test such predictions, it is necessary to measure the spin polarization of electrical currents in graphene. Here, we resolve spin transport directly from conductance features that are caused by quantum interference. These features split visibly in an in-plane magnetic field, similar to Zeeman splitting in atomic and quantum-dot systems(6,7). The spin-polarized conductance features that are the subject of this work may, in the future, lead to the development of graphene devices incorporating interference-based spin filters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据