4.8 Article

The nature of localization in graphene under quantum Hall conditions

期刊

NATURE PHYSICS
卷 5, 期 9, 页码 669-674

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHYS1344

关键词

-

资金

  1. Harvard NSEC

向作者/读者索取更多资源

Particle localization is an essential ingredient in quantum Hall physics. In conventional high-mobility two-dimensional electron systems such as in GaAs/AlGaAs semiconductor heterostructures, Coulomb interactions were shown to compete with disorder and to have a central role in particle localization. Here, we address the nature of localization in graphene where the carrier mobility, quantifying the disorder, is two to four orders of magnitude smaller than in GaAs two-dimensional electron systems. We image the electronic density of states and the localized state spectrum of a graphene flake in the quantum Hall regime with a scanning single-electron transistor. Our microscopic approach provides direct insight into the nature of localization. Surprisingly, despite strong disorder, our findings indicate that localization in graphene is not dominated by single-particle physics, but rather by a competition between the underlying disorder potential and the repulsive Coulomb interaction responsible for screening.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据