4.8 Article

Quantum-inspired interferometry with chirped laser pulses

期刊

NATURE PHYSICS
卷 4, 期 11, 页码 864-868

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nphys1093

关键词

-

资金

  1. NSERC
  2. CFI
  3. Mike and Ophelia Lazaridis Fellowship
  4. IQC
  5. ORDCF

向作者/读者索取更多资源

Interference is a defining feature of both quantum and classical theories of light, enabling the most precise measurements of a wide range of physical quantities including length(1) and time(2). Quantum metrology exploits fundamental differences between these theories for new measurement techniques and enhanced precision(3,4). Advantages stem from several phenomena associated with quantum interferometers, including non-local interference(5,6), phase-insensitive interference(7), phase super-resolution and super-sensitivity(8-10), and automatic dispersion cancellation(6,11,12). However, quantum interferometers require entangled states that are in practice difficult to create, manipulate and detect, especially compared with robust, intense classical states. In the present work, we report an interferometer based on chirped femtosecond laser pulses and classical nonlinear optics showing all of the metrological advantages of the quantum Hong-Ou-Mandel interferometer(7), but with 10 million times more signal. Our work emphasizes the importance of delineating truly quantum effects from those with classical analogues(10,13,14), and shows how insights gained from quantum mechanics can inspire novel classical technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据