4.8 Article

Random organization in periodically driven systems

期刊

NATURE PHYSICS
卷 4, 期 5, 页码 420-424

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nphys891

关键词

-

向作者/读者索取更多资源

Understanding self-organization is one of the key tasks for controlling and manipulating the structure of materials at the micro- and nanoscale. In general, self-organization is driven by interparticle potentials and is opposed by the chaotic dynamics characteristic of many driven non-equilibrium systems. Here we introduce a new model that shows how the irreversible collisions that generally produce diffusive chaotic dynamics can also cause a system to self-organize to avoid future collisions. This can lead to a self-organized non-fluctuating quiescent state, with a dynamical phase transition separating it from fluctuating diffusing states. We apply the model to recent experiments on periodically sheared particle suspensions where a transition from reversible to irreversible behaviour was observed. New experiments presented here exhibit remarkable agreement with this simple model. More generally, the model and experiments provide new insights into how driven systems can self-organize.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据