4.8 Article

Gyro-resonant electron acceleration at Jupiter

期刊

NATURE PHYSICS
卷 4, 期 4, 页码 301-304

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nphys897

关键词

-

资金

  1. NERC [bas010022] Funding Source: UKRI
  2. Natural Environment Research Council [bas010022] Funding Source: researchfish

向作者/读者索取更多资源

According to existing theory, electrons are accelerated up to ultra-relativistic energies(1) inside Jupiter's magnetic field by betatron and Fermi processes as a result of radial diffusion towards the planet and conservation of the first two adiabatic invariants(2-4). Recently, it has been shown that gyro-resonant electron acceleration by whistler-mode waves(5,6) is a major, if not dominant(7), process for accelerating electrons inside the Earth's outer radiation zone, and has redefined our concept for producing the Van Allen radiation belts(8). Here, we present a survey of data from the Galileo spacecraft at Jupiter, which shows that intense whistler-mode waves are observed outside the orbit of the moon Io and, using Fokker-Planck simulations, are strong enough to accelerate electrons to relativistic energies on timescales comparable to that for electron transport. Gyroresonant acceleration is most effective between 6 and 12 jovian radii (R-j) and provides the missing step in the production of intense synchrotron radiation from Jupiter(1,9).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据