4.8 Article

Spectral compression of single photons

期刊

NATURE PHOTONICS
卷 7, 期 5, 页码 363-366

出版社

NATURE PORTFOLIO
DOI: 10.1038/NPHOTON.2013.47

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Ontario Centres of Excellence (OCE)
  3. Canada Foundation for Innovation (CFI)
  4. QuantumWorks
  5. Ontario Graduate Scholarship Program (OGS)
  6. Ontario Ministry of Research and Innovation
  7. ARC [DE130100240]
  8. Australian Research Council [DE130100240] Funding Source: Australian Research Council

向作者/读者索取更多资源

Photons are critical to quantum technologies because they can be used for virtually all quantum information tasks, for example, in quantum metrology(1), as the information carrier in photonic quantum computation(2,3), as a mediator in hybrid systems(4), and to establish long-distance networks(5). The physical characteristics of photons in these applications differ drastically; spectral bandwidths span 12 orders of magnitude from 50 THz (ref. 6) for quantum-optical coherence tomography(7) to 50 Hz for certain quantum memories(8). Combining these technologies requires coherent interfaces that reversibly map centre frequencies and bandwidths of photons to avoid excessive loss. Here, we demonstrate bandwidth compression of single photons by a factor of 40 as well as tunability over a range 70 times that bandwidth via sum-frequency generation with chirped laser pulses. This constitutes a time-to-frequency interface for light capable of converting time-bin to colour entanglement(9), and enables ultrafast timing measurements. It is a step towards arbitrary waveform generation(10) for single and entangled photons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据