4.8 Article

A high-resolution microchip optomechanical accelerometer

期刊

NATURE PHOTONICS
卷 6, 期 11, 页码 768-772

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHOTON.2012.245

关键词

-

资金

  1. Defense Advanced Research Projects Administration QuASaR program through Army Research Office
  2. National Science Foundation [0703267]
  3. Direct For Education and Human Resources
  4. Division Of Graduate Education [0703267] Funding Source: National Science Foundation
  5. Direct For Mathematical & Physical Scien
  6. Division Of Physics [1125565] Funding Source: National Science Foundation

向作者/读者索取更多资源

The monitoring of acceleration is essential for a variety of applications ranging from inertial navigation to consumer electronics(1,2). Typical accelerometer operation involves the sensitive displacement measurement of a flexibly mounted test mass, which can be realized using capacitive(3,4), piezoelectric(5), tunnel-current(6,7) or optical(8-11) methods. Although optical detection provides superior displacement resolution(8), resilience to electromagnetic interference and long-range readout(7), current optical accelerometers either do not allow for chip-scale integration or utilize relatively bulky test mass sensors of low bandwidth(8-10). Here, we demonstrate an optomechanical accelerometer that makes use of ultrasensitive displacement readout using a photonic-crystal nanocavity(12) monolithically integrated with a nanotethered test mass of high mechanical Q-factor(13). This device achieves an acceleration resolution of 10 mu g Hz(-1/2) with submilliwatt optical power, bandwidth greater than 20 kHz and a dynamic range of greater than 40 dB. Moreover, the nanogram test masses used here allow for strong optomechanical backaction(14-17), setting the stage for a new class of motional sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据