4.8 Article

Laser cooling of solids to cryogenic temperatures

期刊

NATURE PHOTONICS
卷 4, 期 3, 页码 161-164

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHOTON.2009.269

关键词

-

资金

  1. Air Force Office of Scientific Research [FA 9550-04-1-0356]

向作者/读者索取更多资源

Laser radiation has been used to cool matter ranging from dilute gases to micromechanical oscillators. In Doppler cooling of gases, the translational energy of atoms is lowered through interaction with a laser field(1,2). Recently, cooling of a high-density gas through collisional redistribution of radiation has been demonstrated(3). In laser cooling of solids, heat is removed through the annihilation of lattice vibrations in the process of anti-Stokes fluorescence(4-6). Since its initial observation in 1995, research(7-15) has led to achieving a temperature of 208 K in ytterbium-doped glass(16). In this Letter, we report laser cooling of ytterbium-doped LiYF4 crystal to a temperature of similar to 155 K starting from ambient, with a cooling power of 90 mW. This is achieved by making use of the Stark manifold resonance in a crystalline host, and demonstrates the lowest temperature achieved to date without the use of cryogens or mechanical refrigeration. Optical refrigeration has entered the cryogenic regime, surpassing the performance of multi-stage Peltier coolers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据