4.8 Article

Graphene photodetectors for high-speed optical communications

期刊

NATURE PHOTONICS
卷 4, 期 5, 页码 297-301

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHOTON.2010.40

关键词

-

资金

  1. Austrian Science Fund FWF [J2705-N16]

向作者/读者索取更多资源

Although silicon has dominated solid-state electronics for more than four decades, a variety of other materials are used in photonic devices to expand the wavelength range of operation and improve performance. For example, gallium-nitride based materials enable light emission at blue and ultraviolet wave-lengths(1), and high index contrast silicon-on-insulator facilitates ultradense photonic devices(2,3). Here, we report the first use of a photodetector based on graphene(4,5), a two-dimensional carbon material, in a 10 Gbit s(-1) optical data link. In this interdigitated metal-graphene-metal photodetector, an asymmetric metallization scheme is adopted to break the mirror symmetry of the internal electric-field profile in conventional graphene field-effect transistor channels(6-9), allowing for efficient photo-detection. A maximum external photoresponsivity of 6.1 mA W-1 is achieved at a wavelength of 1.55 mu m. Owing to the unique band structure of graphene(10,11) and extensive developments in graphene electronics(12,13) and wafer-scale synthesis(13), graphene-based integrated electronic-photonic circuits with an operational wavelength range spanning 300 nm to 6 mm (and possibly beyond) can be expected in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据