4.8 Article

Sub-femtojoule all-optical switching using a photonic-crystal nanocavity

期刊

NATURE PHOTONICS
卷 4, 期 7, 页码 477-483

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nphoton.2010.89

关键词

-

向作者/读者索取更多资源

Although high-speed all-optical switches are expected to replace their electrical counterparts in information processing, their relatively large size and power consumption have remained obstacles. We use a combination of an ultrasmall photonic-crystal nanocavity and strong carrier-induced nonlinearity in InGaAsP to successfully demonstrate low-energy switching within a few tens of picoseconds. Switching energies with a contrast of 3 and 10 dB of 0.42 and 0.66 fJ, respectively, have been obtained, which are over two orders of magnitude lower than those of previously reported alloptical switches. The ultrasmall cavity substantially enhances the nonlinearity as well as the recovery speed, and the switching efficiency is maximized by a combination of two-photon absorption and linear absorption in the InGaAsP nanocavities. These switches, with their chip-scale integratability, may lead to the possibility of low-power, high-density, all-optical processing in a chip.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据