4.8 Article

Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications

期刊

NATURE PHOTONICS
卷 2, 期 2, 页码 105-109

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nphoton.2007.279

关键词

-

向作者/读者索取更多资源

For optimal energy conversion in photovoltaic devices (electricity to and from light) one important requirement is that the full energy of the photons is used. However, in solar cells, a single electron-hole pair of specific energy is generated when the incoming photon energy is above a certain threshold, with the excess energy being lost to heat. In the so-called quantum-cutting process, a high-energy photon can be divided into two, or more, photons of lower energy. Such manipulation of photon quantum size can then very effectively increase the overall efficiency of a device. In the current work, we demonstrate (space-separated) photon cutting by silicon nanocrystals, in which nearby Er3+ ions and neighbouring nanocrystals are used to detect this effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据