4.7 Article

Ca2+-activated Cl- currents are dispensable for olfaction

期刊

NATURE NEUROSCIENCE
卷 14, 期 6, 页码 763-U370

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nn.2821

关键词

-

资金

  1. Prix Louis-Jeantet de Medecine

向作者/读者索取更多资源

Canonical olfactory signal transduction involves the activation of cyclic AMP-activated cation channels that depolarize the cilia of receptor neurons and raise intracellular calcium. Calcium then activates Cl- currents that may be up to tenfold larger than cation currents and are believed to powerfully amplify the response. We identified Anoctamin2 (Ano2, also known as TMEM16B) as the ciliary Ca2+-activated Cl- channel of olfactory receptor neurons. Ano2 is expressed in the main olfactory epithelium (MOE) and in the vomeronasal organ (VNO), which also expresses the related Ano1 channel. Disruption of Ano2 in mice virtually abolished Ca2+-activated Cl- currents in the MOE and VNO. Ano2 disruption reduced fluid-phase electro-olfactogram responses by only similar to 40%, did not change air-phase electro-olfactograms and did not reduce performance in olfactory behavioral tasks. In contrast with the current view, cyclic nucleotide-gated cation channels do not need a boost by Cl- channels to achieve near-physiological levels of olfaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据