4.7 Article

Control of submillisecond synaptic timing in binaural coincidence detectors by Kv1 channels

期刊

NATURE NEUROSCIENCE
卷 13, 期 5, 页码 601-U115

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nn.2530

关键词

-

资金

  1. US National Institutes of Health [DC006877, DC008543]
  2. Ruth Kirschstein National Research Service

向作者/读者索取更多资源

Neurons in the medial superior olive process sound-localization cues via binaural coincidence detection, in which excitatory synaptic inputs from each ear are segregated onto different branches of a bipolar dendritic structure and summed at the soma and axon with submillisecond time resolution. Although synaptic timing and dynamics critically shape this computation, synaptic interactions with intrinsic ion channels have received less attention. Using paired somatic and dendritic patch-clamp recordings in gerbil brainstem slices together with compartmental modeling, we found that activation of K(v)1 channels by dendritic excitatory postsynaptic potentials (EPSPs) accelerated membrane repolarization in a voltage-dependent manner and actively improved the time resolution of synaptic integration. We found that a somatically biased gradient of K(v)1 channels underlies the degree of compensation for passive cable filtering during propagation of EPSPs in dendrites. Thus, both the spatial distribution and properties of K(v)1 channels are important for preserving binaural synaptic timing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据