4.8 Article

Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics

期刊

NATURE NANOTECHNOLOGY
卷 13, 期 11, 页码 1048-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41565-018-0226-8

关键词

-

资金

  1. Institute for Basic Science [IBS-R006-D1, IBS-R006-A1]
  2. Ministry of Science & ICT (MSIT), Republic of Korea [IBS-R006-D1-2018-A00] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Wearable and implantable devices require conductive, stretchable and biocompatible materials. However, obtaining composites that simultaneously fulfil these requirements is challenging due to a trade-off between conductivity and stretchability. Here, we report on Ag-Au nanocomposites composed of ultralong gold-coated silver nanowires in an elastomeric block-copolymer matrix. Owing to the high aspect ratio and percolation network of the Ag-Au nanowires, the nanocomposites exhibit an optimized conductivity of 41,850 S cm(-1) (maximum of 72,600 S cm(-1)). Phase separation in the Ag-Au nanocomposite during the solvent-drying process generates a microstructure that yields an optimized stretchability of 266% (maximum of 840%). The thick gold sheath deposited on the silver nanowire surface prevents oxidation and silver ion leaching, making the composite biocompatible and highly conductive. Using the nanocomposite, we successfully fabricate wearable and implantable soft bioelectronic devices that can be conformally integrated with human skin and swine heart for continuous electrophysiological recording, and electrical and thermal stimulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据